
A POMDP for Optimal Motion Planning with Uncertain Dynamics

Nicolas Meuleau∗ and Christian Plaunt and David E. Smith and Tristan Smith†

Intelligent Systems Division
NASA Ames Research Center

Moffet Field, California 94035-0001
{nicolas.f.meuleau, christian.j.plaunt, david.smith, tristan.b.smith}@nasa.gov

Abstract
This paper describes an approach to the problem of op-
timal motion planning with uncertain dynamics. This
problem can occur whenever a vehicle suffers damage
or when the environment makes the effect of motion ac-
tions unpredictable and potentially risky. We address
in particular the case of aircraft with structural and/or
control surface damage. The goal in this problem is
to find an optimal plan for emergency landing, which
might entail additional exploration of the aircraft flight
envelope. However, this exploration is risky, and must
be balanced by possible improvements in the resulting
emergency landing plan. Evaluating the risk and poten-
tial benefit of exploration allows focusing on the frac-
tion of the envelope that is beneficial, given the current
situation (obstacles and possible landing sites). This re-
duces both the risk and the cost of exploration. The
paper surveys previous work on optimal motion plan-
ning and flight envelope exploration. It shows how the
problem of interleaving both tasks can be modeled as
a Partially Observable Markov Decision Process where
local dependencies between control states are modeled
using Markov Random Fields.

Introduction
Motion Planning is the task of determining a sequence of
movements that brings a robot and its environment to a de-
sired state. The challenges inherent to this domain include
dealing with the continuous nature of the state space, check-
ing and avoiding collisions with obstacles, and accommo-
dating the robots dynamics. Extensive previous work has
brought efficient solutions to these issues, and impressive
applications of motion planning have been developed. See
Choset et al. (2004) for a survey of the field.

Robotic vehicle dynamics is a set of constraints on the
trajectories it can follow. A constraint is non-holonomic if it
cannot be expressed in terms of the robot position only, but
it also involves the robot velocities. For instance, a static
robotic arm with no inertia does not obey any such con-
straint. At each instant, the robot’s movement can be re-
versed to bring it back in its initial position. Conversely,

∗Carnegie Mellon University
†Mission Critical Technologies

ICAPS 2010 POMDP Practitioners Workshop, May 12, 2010,
Toronto, Canada.

a drone is strongly bounded by non-holonomic constraints,
and it takes skills to fly it without stalling or crashing.

In this paper, we focus on a problem in motion planning
that has not been addressed yet (to our knowledge): plan-
ning for a robot that is strongly bounded by non-holonomic
constraints which are not known with certainty. The robot’s
dynamics must be explored through risky sensory or ex-
ploratory actions. Subsequent motion planning depends on
the results of these actions and aims at producing trajectories
that are optimal or near-optimal for some cost function.

Our motivation comes from the Integrated Resilient Air-
craft Control (IRAC) project founded by the NASA Avia-
tion Safety Program. As part of this project, we address
the problem of (automatically) planning emergency landing
routes for aircraft that has suffered possibly severe structural
and/or control surface damage, and whose maneuverability
is largely uncertain. Observing the plane’s reaction to small
control inputs allows exploring the flight envelope, incurring
the risk of losing control of the plane. This is however nec-
essary to determine which moves are doable and which are
not. Once sufficient envelope information is gathered, a least
risky trajectory consistent with this info must be planned.

Previous work addresses both the problem of exploring
the flight envelope independently of planning a route (Yi and
Atkins 2010), and the problem of emergency landing plan-
ning when the dynamics are known with certainty (Meuleau
et al. 2009). In this paper, we consider interleaving both
sub-tasks. The idea is to limit risky exploration of the flight
envelope to only what is necessary given the plane’s situa-
tion (obstacles and possible landing sites). The basic techni-
cal challenge is to assess and balance the risk and benefit of
every sensory action. The risk is to lose control of the plane,
and the benefit is allowing new landing routes. Our goal is
to produce contingent flight plans, where the route followed
depends on the results of exploratory actions.

The technical approach adopted in this paper is to model
the problem as a partially observable Markov decision pro-
cess (POMDP) (Kaelbling, Littman, and Cassandra 1998).
This is consistent with previous work on emergency landing
planning with known dynamics, which is modelled as a fully
observable MDP. Bayesian inference as used in POMDP
theory is the most advanced technique to handle unobserv-
ability in a robot environment (Thrun, Burgard, and Fox
2005). Therefore, it is straightforward to consider this

approach for modelling uncertainty in the dynamics. Of
course, optimal Bayesian planning comes at a cost. The
POMDP model is well known to be intractable, and it is
a challenge to apply it to a real world application such as
emergency landing planning. Our success relies on devel-
oping POMDP models and algorithms that capture the most
important features of the problem while remaining tractable.
This paper presents our propositions to achieve this goal.

The paper is organized as follows: We first outline pre-
vious work on flight envelope exploration. Next, we show
how the uncertainty on the flight envelope can be modelled
as a particular probability distribution known as a Markov
Random Field (MRF). Then we survey previous work on
emergency landing planning with known dynamics, that is
an instance of MDP planning. We show how this work can
be extended into a POMDP model that accounts for the un-
certainty on the flight envelope. Finally, we survey a prelim-
inary implementation of the model.

Flight Envelope Exploration
Our approach to flight envelope exploration builds on previ-
ous work by Atkins and colleagues (Tang, Atkins, and San-
ner 2007; Yi and Atkins 2010) that represents the state-of-
the-art on the topic. This work is based on the idea that the
plane must fly only through stable trim states. A stable trim
state is a equilibrium where all plane velocities stay constant
as long as control input does not change. Atkins et al. pro-
pose a way to model the process of moving from a known
stable trim state to a new state initially uncertain.

Formally, a control configuration z is defined as a vec-
tor containing the plane altitude, air speed, climb rate and
turn rate.1 That is four continuous variables whose values
are bounded. A control input µ is a four-dimensional vec-
tor containing throttle and flight surfaces inputs. Control
states are defined as pairs x = (z, µ). The dynamics of the
plane is a quadratic function f(z, µ) such that, at each time
t: ż = ∂z/∂t = f(z, µ). A stable trim state is then defined
as a pair (z, µ) such that f(z, µ) = 0. In a stable trim state
(z, µ), the configuration z is constant as long as the input µ
is constant. The set of all stable trim states is denoted 0f .
The model also includes a notion of stabilizable trim state.
It represents a control state x that can be held only with the
help of the adaptive controller. Control states that are neither
stable nor stabilizable trim states are called unstable. In this
work, we define the flight envelope ρ as the set of all stable
and stabilizable trim states.

Atkins assumes that, following the incident that triggered
the emergency, an adaptive controller has brought the plane
to an initial stable trim state. Then they proceed to exploring
the control state space step by step. All state variables are

1Our terminology and definitions vary slightly from Atkins et
al. In fact, our choices of vocabulary probably collide with tra-
ditional control theory terminology. However, this work borrows
from several areas of computer science that use different notions
of state and configuration. Therefore, it appears important to us
to avoid all ambiguities and to maintain a certain coherence in the
terminology by using a “private” set of definitions, at the cost of
being in contradiction with part of the literature.

discretized regularly, so that the space to explore is a mul-
tidimensional grid where contiguous states are connected.
Each grid node takes one of the three values stable, stabiliz-
able or unstable.

At each time t, a linear approximation of f called ∆ is
computed at the current state, using the adaptive controller.
This linear approximation is used to estimate the stability of
neighboring states. The stable states are approximated by
the set 0∆ containing all states where ∆ is zero. In most
cases, it intersects 0f only at the current state. That is, all
other states of 0∆ are mistakenly estimated as stable. Nev-
ertheless, exploration is performed by attempting to move to
a state x′ = (z′, µ′) ∈ 0∆. As this state is not really stable, a
control correction δµ is attempted by the adaptive controller
to bring the system to a stable trim state. This process is
uncertain and has three possible outcomes:

1. Everything works as expected and the system makes a
safe transition to the stable trim state (z′, µ′ + δµ) where
a new linear approximation is computed;

2. The control correction δµ is too large and we loose control
of the plane before reaching a new trim state. This may
also happen because there is no control correction δµ that
can make (z′, µ′ + δµ) a trim state. In both cases, we fail
and the plane crashes;

3. The adaptive controller is only able to reach a stabilizable
trim state (z′, µ′ + δµ). This is a warning sign indicating
that we are close to the edge of the flight envelope. No
further exploration should be performed in that direction.

The larger the step we attempt, the bigger the probability of
failing or ending up in a stabilizable state.

Atkins et al. propose an efficient way to model the process
of exploring the flight envelope. To decide which move to
perform in the configuration space, they use a set of prede-
fined exploration policies that follow the edges of the flight
envelope using bug algorithms, and hand-crafted rules to de-
cide which policy to use in a given situation. Overall, explo-
ration of the flight envelope can represent up to 20 minutes
of flight time, most of it being spent waiting for the adap-
tive controller to stabilize the plane. In this paper, propose
to trade part of this execution time for computation time.
Our approach is to limit the amount of flight envelope ex-
ploration by coupling it with the problem of optimal path
planning. We want to assess the relevance of an exploration
move before performing it. Such reasoning must include in-
formation about the plane’s situation that is not taken into
account in Atkins’s work, including possible landing sites
and their characteristics, weather and landscape obstacles.
In a sense, our goal may be seen as to automatically decide
which exploration policy to use in each state encountered,
and to automatically design new exploration policies.

Modeling Uncertainty
Approaching flight envelope exploration as a POMDP re-
quires representing the uncertainty as a belief on the flight
envelope, that is, a probability distribution b(ρ) on the un-
known parameter ρ. This section describes how we address
this important issue.

Following Atkins work, we do not assume a centralized
model of the uncertain dynamics f , but rather a collection

of random variables distributed at the nodes of a discrete
grid in the control state space. We assume that each discrete
state x takes one of the three values stable, stabilizable or
unstable, and that we can observe with certainty the value of
a control state when we visit it. In Atkins work, we also ob-
serve the linear approximation of the dynamics ∆ computed
in each visited state. It is the collection of partial deriva-
tives of f with respect to all control state variables. It can
be used to estimate the probability of success of a move in
every direction. In a sense, ∆ represents noisy information
about the value of each neighboring state. This observation
introduces an implicit dependency between two neighboring
control states x and x′:

Pr(ωx′ | ωx) =
∑
∆

Pr(ωx′ | ∆) Pr(∆ | ωx) .

where ωx is an assignment of value to state x.
Although it does not feature explicit observations of each

neighbor, our model of uncertainty does include dependen-
cies between neighboring states (Pr(ω′

x | ωx)). These de-
pendencies appear to us as a fundamental feature of the
problem that a realistic model should not neglect. In our
simple three-valued model, they are sufficient to generate
rational behavior: if we observe that a state is stabilizable,
we can directly infer that there is a high risk that its uncertain
neighbors are unstable. Conversely, neglecting these depen-
dencies can lead to dramatic policies. Suppose, for instance,
that the system has estimated that it is worthwhile exploring
right bank up to 40 ◦ (all other variables being equal), but
encounters an unstable state at 20 ◦ of bank. If it assumes in-
dependence between neighboring states, it is unable to prop-
agate the bad news about 20 ◦ bank to other control states.
So, it still estimates that it is worthwhile pushing exploration
towards 40 ◦ of bank, and then crashes the plane.

Taking into account dependencies between neighboring
states is also important because it allows generalizing the
value of visited states to uncertain states. Generalization
is a classical capability of machine learning algorithms
(Mitchell 1997). In the case of emergency landing, it al-
lows inferring that a state is very probably flyable/unstable
if a sufficient number of states in its vicinity are known to
be flyable/unstable with certainty. It helps minimizing the
number of exploration moves. This is illustrated in Fig. 1.

The next step in building the model is to look at the depen-
dencies between states that are not neighbours in the control
state grid. We observe a form of Markov property exhibited
in Atkins et al. ’s model. Suppose again that we are explor-
ing right bank, all other variables being constant. At time
t − 2 with 18 ◦ bank, we can estimate the probability that
20 ◦ bank is flyable based on the linear approximation of f
at the current state. At t− 1, with 19 ◦, bank we can build a
new estimate of 20 ◦ bank that is more accurate, because we
are closer to this state. In fact, the new estimate totally over-
rules the old one: the (estimated) probability of the outcome
at time t with 20 ◦ bank depends only on the outcome at time
t− 1, and not on previous time steps. We recognize here the
Markov property that is familiar to the MDP community. In
fact, Markov property is more appropriately expressed spa-
tially rather than temporally: the probability of a state value

Figure 1: Generalization in Markov Random Fields: Starting from
a belief giving uniformly Pr(stable) = 0.5 in all x ∈ X , we
have observed that states are stable with certainty along a trajec-
tory. Left: We assume independence between neighboring states.
Right: Assuming dependencies between neighbors allows general-
izing the value of known states to states in their vicinity.

depends only on its neighbors values :

Pr(ωx | ωx′ , x
′ 6= x) = Pr(ωx | ωx′ , x

′ ∈ N(x)) , (1)

where N(x) is the set of neighbors of x in the grid.
Equation 1 is characteristic of a class of probability dis-

tributions widely used in computer vision and known as
Markov Random Fields (MRFs) (Kindermann and Snell
1980). Using notations compatible with our application, an
MRF is defined over a graph G = (X, N) where X is a set
of vertexes (control states) and N is a neighborhood func-
tion implicitly representing a set of edges (the edges join-
ing adjacent control states). Assuming that each node x can
take a random value over a finite set ({stable, stabilizable,
unstable}), an MRF is defined as a joint probability distribu-
tion over the values of all x ∈ X that satisfies Eqn. 1.

A fundamental result in the study of MRFs is the so called
Markov-Gibbs equivalence. First, we remind that a clique of
G is a subset of nodes C ⊆ X such that every pair of states
in C are neighbors. (Singletons {x} are also considered as
cliques.). Next, a map ω is defined as an assignment of value
to all control states x ∈ X .2 We use ωC to represent the
map ω restricted to clique C. We can think of ωC as an
assignment of value to all states x ∈ C. Then:
• A (nearest-neighbor) Gibbs potential V is a function that

assigns a real value VC(ωC) to every map ωC of every
clique C in G;

• Given a Gibbs potential, the energy U(ω) is defined on
the set of maps as: U(ω) = −

∑
C VC(ωC) ;

• The Gibbs measure (induced by U) is the joint probability
distribution on X defined by:

Pr(ω) =
eU(ω)∑
ω′ eU(ω′)

=
e−

P
C VC(ωC)∑

ω′ e−
P

C VC(ω′
C)

. (2)

The fundamental result of MRF theory is that, given a graph
G = (X, N), a joint probability distribution on X is an MRF
(i.e, satisfies Eqn.1) if and only if it is a Gibbs measure.

The Markov-Gibbs equivalence shows that an MRF be-
lief distribution b(ρ) is completely represented by the set of

2This is again a personal terminology. The term used by math-
ematicians to designate a map as defined here is configuration !

potentials VC(ωC) for all cliques C. In the control state
grid, the only cliques are the singletons {x} and the pairs
(x, x′). Therefore, a belief is totally defined by: (i) The
unary potential Vx(ωx) for all x ∈ X; (ii) The binary poten-
tial Vx,x′(ωx, ωx′) for all (x, x′) ∈ X2. Binary potentials is
cumbersome data that can consume lots of memory space.
For this reason, we do not encode them by defining an ex-
plicit value for each pair (x, x′). Instead, we use a compact
encoding that allows computing all binary potentials based
on a minimum information. For instance, a local pattern
can be defined and applied in all states. In the right graph
of Fig. 1, a simple diffusion process is repeated identically
over the whole grid: Assigning a value of a state uniformly
pushes its neighbors to take the same value.

The conditionals probabilities of an MRF can conve-
niently be computed using:

Pr(ωx | ωx′ , x
′ ∈ N(x)) =

exp−
P

C:x∈C Vc(ωx,ωx′)

Z
, (3)

where Z is a normalizing constant. However, this compact
formula applies only to the case where the value of all neigh-
bors of x is known. When solving the emergency landing
planning POMDP, we estimate the risk of exploring a state x
by the probability that x is unstable given the current belief.
In most cases, we do not know the value of all neighbors
of x when we perform this computation. Sometimes, we
might not even know the value of any of them (if we allow
large jumps in the control state space). In fact, rather than
the conditional probabilities of Eqn. 3, we need the marginal
probabilities Pr(ωx | b) for all x and all ωx. Unfortunately,
computing marginals in an MRF is known to be intractable,
but there are efficient approximation techniques available. In
this work, we use the Markov Chain Monte Carlo (MCMC)
technique known as Gibbs sampling to compute marginal
probabilities (Casella and George 1992). The right graph of
Fig. 1 was generated using this technique.

Another important issue in POMDP models is computing
posterior beliefs. If b is the current belief and we observe o,
then the posterior belief B(b, o) is given by Bayes’ rule:

B(b, o)(ρ) =
b(ρ) Pr(o | b, ρ)∑
ρ′ b(ρ′) Pr(o | b, ρ′)

. (4)

In the case of our application, this computation is largely
simplified by the fact that there is no noise in observations:
when we visit a state, we observe the value of this state
with certainty. (Moreover, as explained before, our model
does not feature an explicit noisy observation of neighboring
states.) The MRF representing the belief B(b, ω̄x) posterior
to observing that state x has value ω̄x is simply obtained by
fixing x to ω̄x in the MRF b, that is:
• The unary potentials Vx′(ωx′) of all states x′ such that

x′ 6= x and x′ /∈ N(x) are unchanged;
• The binary potentials Vx′,x′′(ωx′ , ωx′′) of all state pairs

(x′, x′′) such that x′ 6= x and x′′ 6= x are unchanged;
• For each neighbor x′ of x, the unary potentials Vx′(ωx′)

are all augmented with the value Vx,x′(ω̄x, ωx′);
• The unary potentials Vx(ωx) as well as all binary poten-

tials involving x are discarded. x is not a random variable
of the MRF anymore. It can be pruned from the graph G.

In fact, it is not necessary to compute these potentials explic-
itly for each observation ω̄x. Gibbs sampling can estimate
the marginals of B(b, ω̄x) using the potentials of the prior
belief b. In counterpart, every sample of a value for x is as-
sumed to return the value ω̄x. To represent an initial belief
and a set of posteriors derived by observing the value of one
or several states, we need to store only one copy of the unary
and binary potentials. Each belief is explicitly represented
by the set of known state values, and the Gibbs sampler uses
this information directly to estimate all marginals.

Emergency Landing Planning
An important previous achievement of the IRAC project is
a system able to recommend landing sites and trajectories
based on two pieces of information: the plane’s flight enve-
lope and its environment. The later includes the landscape
configuration, weather obstacles, and a list of possible land-
ing sites with fine estimates of the conditions at each site
(Meuleau et al. 2009). The problem addressed here is a more
classical motion planning problem in the sense that the robot
dynamics are known with certainty. However, it exhibits a
series of difficulties that, although all addressed by previous
literature (Choset et al. 2004), are rarely put together in the
same application:
• Although the dynamics are known with certainty, they

constrain strongly the set of possible trajectories. An air-
craft is arguably among the most non-holonomic systems
that needs to be auto-piloted;

• Conversely to most motion planning applications, we are
not interested in finding any possible trajectory, but we
want a solution that minimizes the risk as much as possi-
ble. In other words, this is a problem of optimal motion
planning where the cost function is the failure probability;

• There is not a single predefined goal state, but we must
select the landing site that is the safest to reach;

• Some obstacles are soft: they can be traversed incurring
a cost. For instance, we may fly through a zone of turbu-
lence, but the probability of failing is higher.

Meuleau et al. (2009) presented the results of previous re-
search on emergency landing planning with known plane dy-
namics, and experiments on real-size instances of the prob-
lem. Some of their best results are obtained using a vari-
ant of the probabilistic roadmap (PRM) algorithm called
DVPRM by the authors. This is not surprising, given that
probabilistic algorithms have become the approach of choice
in many robotic applications, particularly in the presence of
dynamics. The PRM algorithm builds a discrete roadmap
in a continuous space by drawing waypoints at random,
and connecting each waypoint to a fixed number of nearest
neighbors, as long as these connections do not traverse any
obstacle. Waypoints representing the start and goal locations
are added and connected to the roadmap. Then a search al-
gorithm is used to find a path between these two waypoints.
DVPRM is a variant of the PRM approach adapted to the
specificity of the emergency landing problem.

Waypoints: DVPRM uses the notion of robot configura-
tion q that includes the plane latitude, longitude, altitude,

heading and speed. Note the difference with the control con-
figuration z defined above. The control configuration does
not include the plane position (latitude and longitude) and
heading. This is because all variables with which control is
concerned (mostly linear and angular velocities) evolve in-
dependently of where the plane is located on the map and
where it is heading. (Altitude is important because it af-
fects the air density.) Conversely, the robot configuration
determines the exact position of the plane on the map. It is
necessary if we want to take into account obstacles in the en-
vironment. In counterpart, the robot configuration excludes
most velocity information. As explained below, these vari-
ables influence the cost of the edges of the roadmap.
Roadmap: Robot configurations are generated at random
within the resource bounds of the plane. Then neighboring
configurations are connected if no hard obstacle interferes.
Edges can traverse soft obstacles but it impacts their cost.
To account for the plane dynamics, edges are oriented and
two edges with different orientation and cost are created for
each pair of neighboring waypoints. A waypoint is added to
the roadmap to represent the plane and each possible land-
ing site.3 Because it seeks a near-optimal solution, DVPRM
allows cycles in the roadmap. In other words, the roadmap
is not limited to a tree as in the popular Rapidly-expanding
Random Tree (RRT) and its variants. By generating several
solutions, we increase our chance to generate a good one.

The most original feature of the algorithm is to incorpo-
rate waypoints and edges from the visibility graph to the
PRM. The visibility graph is an early approach to polygo-
nal obstacle avoidance. It contains a node for each obsta-
cle corner and for the start and goal locations. Two nodes
are connected if the segment between them does not tra-
verse any (hard) obstacle. In 2D, the visibility graph is
guaranteed to contain an optimal path, but this does not
generalize to higher dimensions and soft obstacles. Never-
theless, Meuleau et al. (2009) proposed to extend visibility
graph nodes in several dimensions to make them well de-
fined robot configurations. These waypoints are then added
and connected to the probabilistic roadmap. They are ideal
for skirting obstacles efficiently. They help the algorithm
find shorter and smoother paths around obstacles.
Edge cost: The cost of an edge between two robot con-
figurations q and q′ is a failure probability that reflects the
plane’s limited maneuverability, the presence of obstacles
in the environment, and limited resources. First, a trajectory
planner (also developed in the IRAC project) is used to com-
pute the shortest trajectory between q and q′. The trajectory
planner takes as input the plane’s flight envelope ρ and out-
puts a trajectory that stays within the maneuverability con-
straints. This is done by essentially computing Dubins path
between the waypoints. In general, less constrained flight
envelopes allow shorter and safer trajectories. The differ-
ence can be pretty dramatic. For instance, limiting left bank
can prevent a short left turn and force a large and costly turn
to the right. Next, we check if this trajectory exhausts any

3Meuleau et al. (2009) used a new roadmap for each possible
landing site. However, in the POMDP model that would not allow
selecting the landing site based on the results of exploration moves.

resource and set the failure probability to one if it happens.
Finally, the trajectory is checked for obstacle collisions, and
its failure probability is estimated. It is as a function of the
total length of the trajectory, and the length travelled in each
obstacle. Edge computation is the most expensive part of
the algorithm. Therefore, DVPRM uses a lazy approach that
does not compute the traversibility and cost of an edge until
that edge is reached during search. Once computed, results
are stored for the rest of the search.
Search: Search is performed by the standard A* algo-
rithm. The heuristic value of a robot configuration is ob-
tained by computing the Euclidean distance from its lati-
tude and longitude to the closest goal’s latitude and longi-
tude, and assuming this distance is flight in clear weather.
This admissible heuristic guarantees that optimal solutions
are found, while allowing pruning a consequent portion of
the search space. If there are resource constraints such as a
maximum distance travelled and/or time before landing, A*
search nodes must be augmented with a variable represent-
ing the remaining level of each limited resource. That is,
two search nodes are considered equal if they represent the
same robot configuration, and if they have the same level of
remaining resources. This is necessary to guarantee that the
sub-graph below a node depends only on this node, and not
on the path to this node.

The POMDP
In this paper, we model the problem of interleaving flight
envelope exploration and emergency landing planning as a
Partially Observable Markov Decision Process (POMDP)
(Kaelbling, Littman, and Cassandra 1998). This is consis-
tent with previous work on planning with known dynam-
ics, which may be seen as an instance of MDP planning.
An MDP-state of the emergency landing problem is a triple
s = (q, θ, ρ) where q is a robot configuration, θ represents
the levels of remaining resources, and ρ is a representation
of the flight envelope. In other words, the triple (q, θ, ρ)
contains all the information necessary to determine the suc-
cess probabilities of future moves. DVPRM actually finds
the solution of the following Bellman equation:
V (landed, θ, ρ) = 1 , V (crashed, θ, ρ) = 0 ,

V (q, θ, ρ) =

max
q′∈M(q)

[Pr(succ | q, θ, ρ, q′)V (q′, θ − C(q, ρ, q′), ρ)] ,

where q is a robot configuration where the plane is neither
landed nor crashed, M(q) is the set of neighbors of q in
the roadmap, Pr(succ | q, θ, ρ, q′) if the probability of suc-
cessfully flying from q to q′ given the resource θ and flight
envelope ρ, and C(q, ρ, q′) is the cost of flying from q to q′

in terms of resources. The solution is a set of values V (s)
representing the probability of successfully landing if we are
in state s and follow an optimal flight plan, for each state s
reachable by the optimal solution. Note that the flight enve-
lope information ρ is constant throughout, and so it can be
omitted from all equations. The new MDP-states s = (q, θ)
are exactly the search nodes of the A* algorithm in DVPRM.

The MDP model is turned into a POMDP to account
for flight envelope uncertainty in the following way. A

POMDP-state is defined a s a triple s̃ = (q, θ, b) where b
is a belief on the unknown parameters, that is, a probability
distribution b(ρ). The new Bellman equation is:

Ṽ (landed, θ, b) = 1 , Ṽ (crashed, θ, b) = 0 ,

Ṽ (q, θ, b) = max
{

Ṽ1(q, θ, b), Ṽ2(q, θ, b)
}

,
(5)

Ṽ1(q, θ, b) =

max
q′∈M(q)

[
Pr(succ | q, θ, b, q′)Ṽ (q′, θ − C(q, b, q′), b)

]
,

Ṽ2(q, θ, b) = max
a

[∑
o

Pr(o | q, b, a)

Pr(succ | q, θ,B(b, o), S(q, a, o))

Ṽ (S(q, a, o), θ − C(b, a, o),B(b, o))

]
.

Two Types of Actions: Equation 5 reads as follows: in ev-
ery POMDP state s̃, we can chose from two types of action:
1. Ordinary actions are exploration-safe actions: they do
not traverse any control state whose value is uncertain. They
represent alternative Ṽ1 in Bellman equation. Following the
choice of destination waypoint q′, we incur a risk of failing
and a resource cost that depend on the current belief b:

Pr(succ | q, θ, b, q′) = Eρ [Pr(succ | q, θ, ρ, q′) | b] ,

C(q, b, q′) = Eρ [C(q, ρ, q′) | b] .

As ordinary actions do not provide any new information on
the flight envelope, the belief is unchanged in the arrival
state: s′ = (q′, θ − C(q, b, q′), b). In practice, the risk
Pr(succ | q, θ, b, q′) and cost C(q, b, q′) are computed by
querying the trajectory planner using a (certain) model of
the flight envelope ρ̄(b) defined as:

ρ̄(b) = {x : Pr(x 6= unstable | b) ≥ 1− εsafe} . (6)

That is, ρ̄(b) contains all control states x that have a prob-
ability of being flyable greater or equal to 1 − εsafe, where
εsafe ' 0 is an algorithm parameter. The cost reflects the risk
associated with flying from q to q′ given the current condi-
tions. It neglects the risk associated with the uncertain flight
envelope, which is bounded by εsafe in each control state.
2. Exploratory (or sensory) actions do not aim at advanc-
ing the plane toward a goal. Instead, their purpose is to ex-
plore uncertain control states. They represent option Ṽ2 in
Bellman equation. An exploratory action a is modelled as a
trajectory in the (discretized) control state space from a ref-
erence state x0(q) to a state with uncertain value, and then
back to x0(q). (x0 depends on q because control states and
robot configurations are bounded by the altitude and speed
variables.) This exploration provides an observation o about
the value of some control configurations, according to the
probability distribution Pr(o | q, b, a). An exploration move
may encounter an unstable state and cause a plane crash,
which is modeled by observation ofail. If successful, it leads
to robot configuration S(q, a, o) (S stands for “successor”),
with a resource cost C(b, a, o). It is convenient to have the

final configuration S and cost C depend on the action out-
come o. Then we can model a crash during exploration by
setting S(q, a, ofail) = crashed. The new belief B(b, o) is
obtained by applying Bayes’ rule as in Eqn. 4.

The risk associated with flying from q to its successor
while executing a is represented by the factor Pr(succ |
q, θ,B(b, o), S(q, a, o)). This probability is computed as in
the equation of Ṽ1, by passing the certain model of the flight
envelope ρ̄(B(b, o)) defined by Eqn. 6 to the trajectory plan-
ner, then checking for obstacle traversal. Note that we use
the posterior belief instead of the current belief to compute
ρ̄. It reflects the fact that the exploration action successfully
traverses control states appearing uncertain according to b.

In the rest of this paper, we assume that S(q, a, o) = q
for all o 6= ofail. In other words, we assume that the ef-
fects of exploration moves are negligible at the scale of path
planning (as long as the plane does not crash). To simplify
notation, we also assume that C(b, a, o) = 0 for all b, a, o.
The equation of Ṽ2 becomes simply:

Ṽ2(q, θ, b) =

max
a

 ∑
o6=ofail

Pr(o | q, b, a)Ṽ (q, θ,B(b, o))

 .

The cost of an exploration move reflects only the risk due
to the uncertainty in the flight envelope, through the term
Pr(ofail | q, b, a) = 1 −

∑
o6=ofail

Pr(o | q, b, a). It neglects
the risk due to flying in the environment during exploration.
Layered Roadmap: Sensory actions may have different
outcomes o, and the optimal POMDP policy may follow a
different course of actions for each outcome. So, exploratory
actions introduce branches in the plan, as many branches as
there are possible outcomes o 6= ofail. (We do not need to
plan for contingency ofail because this observation interrupts
plan execution on a failure.) Ordinary actions have two pos-
sible outcomes, one being plan failure and the other a suc-
cessful transition to a known successor waypoint. Therefore,
they do not introduce any branch in the plan.

The POMDP can be represented as set of roadmaps R(b),
one for each reachable belief b. These roadmaps use robot
configurations q as waypoints, as in the fully observable
case. (Resources are omitted and taken into account only by
the search algorithm.) The system starts in R(b0) for some
initial belief b0. Ordinary actions move the system inside
of the current roadmap R(b) as they do not change the be-
lief. Exploratory actions trigger a jump to a new roadmap
R(B(q, b, o)) depending on the observation performed o.
We call this structure the layered roadmap.

Our approach is based on representing each “layer” R(b)
using a DVPRM roadmap. As generating and connecting
waypoints is an expensive stage of DVPRM, we use the
same waypoints and edges for each belief b. Only the cost
of edges, computed using ρ̄(b), varies from one roadmap to
the other. The whole POMDP is thus represented as a sin-
gle roadmap where edges have multiple costs associated to
different beliefs under which they are reachable.
Search and Heuristics: Search is performed using the
AO* algorithm that is the variant of A* for AND-OR graphs

(graph with contingent branches). AO* search nodes are
POMDP-states (q, θ, b) (they account for limited resources).

In the case of known dynamics, the heuristic value of an
MDP-sate (q, θ, ρ) is the cost of flying in clear weather the
Euclidean distance to the closest landing site. We denote it
hEuclid(q, θ). Note that it does not depend on ρ, because
it supposes a straight trajectory that does not respect plane
dynamics. It is admissible, as it assumes that an optimistic
distance estimate is flight in optimistic external conditions.

The heuristic hEuclid can be used in the POMDP as well.
However, it is quite inefficient because it forces the search to
re-discover some features of the environment, such as obsta-
cles, in each roadmap R(b). An efficient heuristic must be
able to generalize observations made in a roadmap R(b) to
other roadmaps R(b′), b′ 6= b. For instance, if there is a line
of severe thunderstorms on the left of the plane, we should
not explore the space on the left in every roadmap.

The POMDP heuristic h̃optimist(q, θ) exhibits the gener-
alization capability. It is based on solving the emergency
landing MDP using the flight envelope model ¯̄ρ defined as

¯̄ρ(b0) = {x : Pr(x 6= unstable | b0) > εdoable} ,

where εdoable ' 0 is an algorithm parameter. That is, all
uncertain states according to the initial belief b0 are assumed
flyable in this model. The heuristic h̃optimist is then defined
as the optimal solution of this MDP:

h̃optimist(q, θ) = V (q, θ, ¯̄ρ(b0)) . (7)

It is an admissible heuristic because it uses an optimistic
model of the flight envelope. Conversely to hEuclid, it carries
information about the plane environment across roadmaps.
For instance, if a configuration q is assigned bad MDP-value
because it is in the middle of costly obstacles, then search
avoids it in all roadmaps R(b) of the POMDP.

Unfortunately, Eqn. 7 is difficult to implement exactly.
The optimistic MDP is solved using DVPRM with the
heuristic hEuclid and the same set of waypoints and edges as
in the POMDP layered PRM. It provides the optimal value
V (q, θ, ¯̄ρ(b0)) for all (q, θ) traversed by the optimal solu-
tion, but the values of other states are not guaranteed to be
accurate. However, solving the POMDP requires the value
h̃optimist(q, θ) for some pairs (q, θ) that do not belong to the
MDP optimal solution. This may happen because config-
uration q is not traversed by the optimal solution. In this
case, an accurate value for V (q, θ, ¯̄ρ(b0)) can be computed
by re-starting the MDP A* search from this state. In other
cases, q is traversed by the optimal MDP policy, but with a
different level of resource θ. In fact, the resource left at a
given waypoint q almost always differ from a POMDP layer
R(b) to the optimistic MDP roadmap. This is because a
different model of the flight envelope is used to compute
edge costs in each roadmap (ρ̄(b) 6= ¯̄ρ(b0)). We cannot
restart the A* search each time, because that would mean
re-solving the optimistic MDP nearly for each state encoun-
tered by the POMDP AO* search. Therefore, we use the fol-
lowing scheme: When we need the heuristic value of a pair
(q, θ), we check in the optimistic MDP whether there ex-
ists a resource level θ′ such that (i) V (q, θ′, ¯̄ρ(b0)) is known

with certainty, (ii) θ′ represents a higher or same level of re-
source than θ, for each resource. If such θ′ exists, we set
h̃optimist(q, θ) = V (q, θ′, ¯̄ρ(b0)). Otherwise, the MDP A*
search is restarted from (q, θ). (If several θ′ satisfy the con-
ditions, we select the closest to θ.) Because higher levels of
resources allow better solutions, this heuristic is admissible.

Macro-actions: Despite smart heuristics, we still face an
exponentially large belief state space. Indeed, if we allow
exploring each control state individually, then the number
of belief states reachable is exponential in the side of the
grid. In our application, this number is 3|X| where X is
the number of control states, because each state can be ei-
ther unknown, stable or stabilizable according to the belief.
(Again, there is no need to represent a belief where a state is
unstable, because we crash when reaching it.) Therefore, we
limit exploration actions to a finite set of exploration macro-
actions (Hauskrecht et al. 1998). A macro-action A is de-
fined as a trajectory TA in the control state space from the
reference state x0(q) to a target state xA whose value is un-
certain. Executing the macro-action consists of following
TA as long as the states traversed turn out to be stable. Ex-
ploration of trajectory TA terminates: (i) when we reach the
target xA having encountered only stable states on the way;
(ii) when we reach a stabilizable state, in which case we
purposely interrupt exploration; (iii) if the plane crashes be-
cause we have traversed an unstable state. (In the first two
cases, A also includes flying back to x0(q).)

An exploration action represented by a trajectory of
length l has l + 1 possible outcomes that are worth planning
for: observing that one of the states traversed is stabilizable
(l− 1 outcomes); and going all the way to the target and ob-
serving that it is stable or stabilizable (2 outcomes). It con-
trast strongly with the 2l−1 outcomes that are possible if we
explore all states traversed by TA one by one. In fact, macro-
actions save considerable computation time by implement-
ing a strong heuristic: we must stop exploring a direction
when we encounter a stabilizable state. An algorithm using
only primitive actions defined as simple jumps in the control
space must re-discover this principle itself, which implies
high computational costs.

We further restrict the set of reachable beliefs by limiting
exploration to a few number of macro-actions in each trajec-
tory. As a consequence, the set of control states whose value
can be observed with certainty in a single run is very limited.
The algorithm relies strongly on the ability of MRF beliefs
to generalize observations. The POMDP planner evaluates
the benefit of each exploration move by measuring how the
possible outcomes can be usefully generalized.

Preprocessing beliefs: Computing the marginal distribu-
tions Pr(ωx | b) of belief functions is an important step of
the algorithm. The marginal distributions of b are necessary
for two purposes: (i) determining the safe flight envelope
model ρ̄(b) used to compute ordinary actions success prob-
abilities; (ii) determining macro-actions transition probabil-
ities from b, that is, set of beliefs that can be reached from
b through a macro-action, and their probabilities. As ex-
plained before, computing marginals is intractable and we
use the MCMC technique known as Gibbs sampling to ap-

Figure 2: Depending on the outcome of exploration, the plane (tri-
angle) follows a different route to Moffet Field (MOF). Left: The
plane first explores right bank angles and positive descent rates. If
this exploration is successful enough, it lands following the short-
est path. Otherwise, it searches for an alternative route by explor-
ing left bank. Right: The planner finds different way to go around a
rectangle obstacle. If there is insufficient right (resp. left) bank, one
of the large loops on the right (resp. left) of the figure is executed.

proximate them. Then we try to limit the number of beliefs
reachable through the use of a finite set of macro-actions, re-
lying on MRFs generalization abilities to compensate. Nev-
ertheless, our preliminary simulation results show that the
vast majority of the algorithm execution time may be spent
in Monte Carlo simulations, and that it sometimes blows up
the computation time above the delays admissible for emer-
gency landing planning (which is in the order of 10 seconds).
This cost can be reduced by performing less simulation tri-
als, which reduces the accuracy of the estimates. More inter-
estingly, we observe that the computation of marginal prob-
abilities is independent of the plane location. Therefore, if
the initial belief is known in advance, then all probabilis-
tic inferences involving beliefs can be performed off-line,
before knowing the initial situation from which the emer-
gency landing planner will be run. More precisely, we can
compute in advance the set of reachable beliefs, the macro-
actions belief transition probabilities, and the safe flight en-
velope models ρ̄(b) for each reachable belief b. This infor-
mation is saved to a file and all other belief related data can
be discarded (including all marginal probability estimates).
Later, this information can be quickly reloaded and used to
develop the AO* search tree from a given initial situation.
In this way, the on-line computation time the algorithm is
reduced to fraction of the total execution time.

Implementation
We have implemented a preliminary version of our POMDP
planner and connected it to the real-size emergency landing
planner developed in the IRAC project. It was made possible
through the following model simplifications:
• The air speed variable is removed from the robot configu-

rations used for path planning. It is not a control anymore.
Instead, it is decreased uniformly over each trajectory;

• The flight envelope is represented by a two-dimensional
MRF defined over the bank angle (which is closely related
to turn rate) and descent rate. The value of a control state
is supposed independent of the altitude and speed;

• Simplifying assumptions are used to compute macro-
actions transition probabilities.

Our preliminary implementation uses the simple heuristic
hEuclid instead of hoptimist. Figure 2 shows examples of
contingent plans. The most complex plan (right) was com-
puted in about 17s on an average laptop computer, around
19% of it being devoted to belief computation. The cost of
building the probabilisitc roadmap appears neglectible, so,
the reamining 81% are spent mostly in AO* search. This
is because collision checking is performed in a lazy way, at
the time of searching de graph (an edge is computed only
if is traversed by search). Indeed, 72% of AO* search time
is spent in collision checking. Execution time blows if we
increase the number of Monte Carlo samples and the num-
ber of waypoints in the roadmap. Future work will evaluate
how various acceleration techniques discussed above help
address this complexity.

Conclusion
We outlined a new class of problem involving motion plan-
ning with uncertain non-holonomic constraints. Through
the example of damaged aircraft, we showed an approach
based on carefully selecting the state variables that are repre-
sented at each stage of reasoning (exploration and path plan-
ning), and ensuring a coherent interaction of different mod-
els (MRF and POMDP). Various optimization techniques,
such as powerful heuristics, intelligent macro-actions, and
belief preprocessing allow applying this approach to real-
size problems. Future work will present the technical details
hidden here, as well as extensive simulation results.

Acknowledgments
This work was supported by the Intelligent Resilient Aircraft Con-
trol program of the NASA Aeronautics Research Mission Direc-
torate. We thank Ella Atkins and Robert Sanner for discussion on
their work, and Christian Neukom for feedback on this paper.

References
Casella, G., and George, E. I. 1992. Explaining the gibbs sampler.
The American Statistician 46(3):167–174.
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.;
Kavraki, L.; and Thrun, S. 2004. Principles of Robotic Motion:
Theory, Algorithms, and Implementation. MIT Press.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of Markov decision
processes using macro-actions. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, 220–229.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic domains.
Artificial Intelligence 101(1-2):99–134.
Kindermann, R., and Snell, J. L. 1980. Markov Random Fields
and Their Applications. American Mathematical Society.
Meuleau, N.; Plaunt, C.; Smith, D.; and Smith, T. 2009. A com-
parison of risk sensitive path planning methods for aircraft emer-
gency landing. In ICAPS-09: Proceedings of the Workshop on
Bridging The Gap Between Task And Motion Planning, 71–80.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Tang, Y.; Atkins, E.; and Sanner, R. 2007. Emergency flight plan-
ning for a generalized transport aircraft with left wing damage. In
Proc. Guidance, Navigation, and Control Conference. AIAA.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). MIT Press.

Yi, G., and Atkins, E. 2010. Trim state discovery for an adaptive
flight planner. In Aerospace Sciences Meeting. AIAA.

